Методы математической физики

Семинар № 1. Колебания струны: метод Фурье.

Мих. Дмитр. Малых

Физический факультет МГУ

2012/13 уч. г., версия от 12 июня 2012 г.

Предуведомление

Настоящий файл - всего лишь собрание слайдов, показ которых будет сопровождать проведение семинара по курсу ММФ в 303 гр. ФФ МГУ в 2012/13 уч. г. на правах эксперимента. К нему приложены все демонстрируемые программы и прочие материалы ${ }^{1}$.
Я не рекомендую студентам переписывать слайды себе в тетради, а напротив призываю заранее скачивать слайды с сайта http://mmph.narod.ru, слушать и делать пометки, благо Adobe Reader 10 поддерживает функцию комментирования.
М.Д. Малых, 1 июня 2012 г.

[^0]
O курсе ММФ

Курс ММФ читается один семестр. На семинары будет вынесено решение след. задач:
(1) О колебании струны
(2) О стационаром распределении тепла

3 Первая краевая задача для уравнения Пуассона
(4) О колебании мембраны
(5) О6 нестационарном распределении тепла
© О заземленной полости
(7) О6 уравнении Шредингера

Тестирование планируется провести в середине октября по задачам № 1-3 и в конце семестра по задачам № 4-6. На зачете будет обсуждаться выполнение домашнего задания.

Вопрос № 1.

Уравнение колебаний струны

Историческое вступление

Согласно древней басне, переданной Ямвлихом [1], зависимость высоты звука от натяжения струны была выражена в пропорциях Пифагором. Однако верную зависимость высоты звука от параметров струны открыл опытным путем Марен Мерсен (Mersenne, 1636) лишь в XVII веке [2].

Илл. из миланского издания 1492 года «Theorica musicae» Гафурия.

Определение струны

Обычно струну определяют как гибкую нить, О.Д. Хвольсон[2] входит в большие подробности:

Струной в теории называется твердое нитевидное тело, площадь поперечного сечения которого вообще мала сравнительно с его длинной, и которое вовсе не сопротивляется изгибанию, так что изменение его формы, сохраняющее его длину, не вызывает в нем никаких упругих сил.

Монохорд

Здесь и далее ρ - плотность струны, l - длина, S - площадь поперечного сечения, T - натяжение.

Система координат

Натяжение

Натяжением T будем называть модуль силы, с которой кусок струны, бывшей в начальный момент времени между точками с абсциссами $x=0$ и $x=x$, действует на оставшийся кусок струны.
Математическое выражение понятия гибкости заключается в том, что напряжения, возникающие в струне,
 всегда направлены по касательным к ее мгновенному профилю.

Натяжение

В физической литературе принимают за очевидное, что T постоянно вдоль струны и равно или весу груза, переделанного к струне, или определяет начальным натяжением, возникшим в результате закручивания колков.
В математической литературе полагают T функцией x и t и доказывают ее постоянство.

Предположение № 1

Струна совершает поперечные колебания, т.е. точка струны, имевшая в начальный момент времени координату ($x, 0$), переместится в точку, координаты которой можно представить так $(x, u(x, t))$.
Мгновенный профиль описывается
 уравнением $y=u(x, t)$.

Предположение № 2

Струна совершает малые колебания. Тангенс угла наклона касательной к мгновенному профилю струны $y=u(x, t)$, скажем $\tan \alpha$, равен u_{x}. Будем считать эту величину малой.

Длина куска струны

В силу сделанных предположений

$$
u_{x}^{2}=\tan ^{2} \alpha=\frac{\sin ^{2} \alpha}{1-\sin ^{2} \alpha} \quad \Rightarrow \quad \sin ^{2} \alpha=\frac{u_{x}^{2}}{1-u_{x}^{2}}=u_{x}^{2}+\ldots
$$

то есть

$$
\sin \alpha \approx u_{x}, \quad \cos \alpha \approx 1
$$

Кусок струны, бывшей в начальный момент времени между точками с абсциссами $x=x_{1}$ и $x=x_{2}$, имеет длину

$$
\int_{x_{1}}^{x_{2}} \sqrt{1+u_{x}^{2}} d x=x_{2}-x_{1},
$$

которая, следовательно, не меняется со временем.

Методы математической физики
Уравнение колебаний струны

Закон Гука

Величина натяжения, возникающего вследствие упругости, описывается законом Гука.
Поскольку длины кусков струны не меняются со временем, натяжение T может завить разве только от x.

Внешние силы, действующие на кусок $x_{1}<x<x_{2}$

2-ой закон Ньютона для оси абсцисс

Кусок струны не должен двигаться вдоль оси абсцисс, поэтому
$\left.T(x) \cos \alpha\right|_{x=x_{1}}-\left.T(x) \cos \alpha\right|_{x=x_{2}}=0$,

откуда

$$
T\left(x_{1}\right)=T\left(x_{2}\right),
$$

т.е. натяжение постоянно вдоль
 струны.

2-ой закон Ньютона для оси ординат

Проекция его импульса куска на ось y равна

$$
S \int_{x_{1}}^{x_{2}} \rho u_{t} d x
$$

в силу 2-го закона Ньютона, скорость ее изменения равна проекции сил на ось $O y$, то есть
$S \frac{d}{d t} \int_{x_{1}}^{x_{2}} \rho u_{t} d x=T\left[u_{x}\left(x_{2}, t\right)-u_{x}\left(x_{1}, t\right)\right] ;$

Методы математической физики
Уравнение колебаний струны

2-ой закон Ньютона для оси ординат-2

Замечая, что

$$
T\left[u_{x}\left(x_{2}, t\right)-u_{x}\left(x_{1}, t\right)\right]=\int_{x_{1}}^{x_{2}} T u_{x x} d x
$$

и

$$
\frac{d}{d t} \int_{x_{1}}^{x_{2}} \rho u_{t} d x=\int_{x_{1}}^{x_{2}} \rho u_{t t} d x
$$

сразу имеем

$$
\int_{x_{1}}^{x_{2}}\left[S \rho u_{t t}-T u_{x x}\right] d x=0
$$

Уравнение колебаний

В силу произвольности выбор точек x_{1} и x_{2} пред. равенство означает, что

$$
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad a=\sqrt{\frac{T}{S \rho}} .
$$

Это и есть уравнение Ньютона, описывающее движение струны. Заметим, что это уравнение - уравнение в частных производных 2-го порядка; его, по понятным причинам, называют уравнением колебаний.

Вопрос № 2.

Собственные колебания

Гармоники

Поперечные колебания струны вида $u=u(x) \sin (\omega t+\theta)$ возможны лишь при дискретном наборе частот, составляющих т.н. гармонический ряд

$$
\omega_{1}, \omega_{2}=2 \omega_{1}, \omega_{3}=3 \omega_{1}, \ldots, \quad \text { где } \quad \omega_{1}=\frac{\pi}{l} \sqrt{\frac{T}{S \rho}}
$$

Эти частоты называют собственными частотами струны. Гармонические колебания, возникающие при собственных частотах, называют собственными модами или гармониками.

Узлы

Мгновенный профиль струны n-ой моды имеет весьма приметный вид

$$
y=C \sin \frac{\pi n x}{l} \sin \left(\omega_{n} t+\theta\right),
$$

где C - оставшаяся неопределенной константа, и, следовательно, на струне имеется ровно n пучностей, между которыми лежат $n-1$ неподвижных точек, именуемых узлами.

Законы Мерсена

Единственная мода, не имеющая узловых точек, отвечает первой (наименьшей) собственной частоте

$$
\nu=\frac{1}{2} \sqrt{\frac{T}{S l^{2} \rho}} .
$$

Это формулы соединяет вмести 4-ре закона, найденные Мерсеном опытным путем.

Математическая сторона вопроса

Краевая задача

$$
\begin{equation*}
\left\{u^{\prime \prime}+\lambda u=0, \quad u(0)=u(l)=0\right. \tag{1}
\end{equation*}
$$

имеет нетривиальные решения u только при дискретном наборе значений параметра λ, именуемых собственными значениями этой задачи, а именно

$$
\lambda_{1}=\frac{\pi^{2}}{l^{2}}, \quad \lambda_{2}=\lambda_{1} 2^{2}, \ldots
$$

Каждому собственному значению λ_{n} отвечает решение $u=C \sin \pi n x$, определенное с точностью до мультипликативной константы C, это решение, в котором обычно опускают константу, называют собственной функцией.

Возбуждение колебаний: метод Фурье

Возбуждение струны щипком и ударом

При возбуждении колебаний в начальный момент времени любо отклоняют струну от положения равновесия (щипок), либо придают ей начальную скорость при помощи удара (удар).

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<l, t>0) \\
\left.u\right|_{t=0}=\varphi(x),\left.\quad u_{t}\right|_{t=0}=\psi(x) \\
\left.u\right|_{x=0}=\left.u\right|_{x=\pi}=0
\end{array}\right.
$$

За классическое решение этой задачи принимают дважды непрерывно дифференцируемую функцию в области $\{0<x<l$ и $t>0\}$ и непрерывную в замыкании этой области $\{0 \leq x \leq l$ и $t \geq 0\}$.

Корректность задачи

Причины, по которым берут именно столько краевых условий, требуют пояснения. Напр., раз конец $x=0$ закреплен, то и $u_{t}(0)=0$, но мы не добавляем это условие в формулировку задачу. Дело в том, что при составлении задачи математической физики следует стремится не перечислить все условия, а поставить математически корректную задачу.

Определение
Задача называется корректной по Адамару, если 1.) ее решение единственно, 2.) ее решение существует и 3.) ее решение устойчиво относительно малых изменений входных данных.

Идея метода Фурье

Еще в начале XIX века возникла идея, обычно связываемая с именем Фурье, искать u как суперпозицию гармоник:

$$
u=\sum_{n=1}^{\infty}\left[A_{n} \sin \omega_{n} t+B_{n} \cos \omega_{n} t\right] \sin \frac{\pi n}{l} x,
$$

где A_{n} и B_{n} подлежащие определению константы.
В те времена с бесконечными суммами работали так, как будто они конечные, не беспокоясь о сходимости. Заметив же, что нормальные моды

$$
\left[A_{n} \sin \omega_{n} t+B_{n} \cos \omega_{n} t\right] \sin \frac{\pi n x}{l}
$$

по отдельности удовлетворяют волновому уравнению, считали очевидным, что тоже верно и для их суммы, распространив тем самым принцип суперпозиции и на бесконечные суммы.

Идея метода Фурье-2

Подставив эту же сумму в начальные условия, получили, что константы A_{n} и B_{n} следует подобрать так, чтобы при всех $0 \leq x \leq l$ выполнялись равенства

$$
\varphi(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{\pi n x}{l}
$$

и

$$
\psi(x)=\sum_{n=1}^{\infty} \omega_{n} A_{n} \sin \frac{\pi n x}{l} .
$$

Так, собственно говоря, Фурье и пришел к мысли о возможности разложения произвольной функции в ряд по тригонометрическим функциям.

Основная теорема теории рядов Фурье

Произвольную функцию f, первая производная которой непрерывна на отрезке $0 \leq x \leq l$ и которая сама удовлетворяет граничным условиям

$$
f(0)=f(l)=0,
$$

можно разложить в ряд Фурье по синусам

$$
f(x)=\sum_{n=1}^{\infty} f_{n} \sin \frac{\pi n x}{l} \quad(0 \leq x \leq l),
$$

коэффициенты которого вычисляются по формулам

$$
f_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{\pi n x}{l} d x .
$$

Первый способ доказательства

Доказательство основано на том, что функцию f можно продолжить до непрерывной нечетной $2 l$-периодической функции, к которой применим, напр., признак Липшица, [3], т. 3, п. 684.

График функции

Функция f задана на отрезке $0<x<l$.

Шаг № 1: нечетное продолжение

Условие $f(0)=0$ дает, что в точке $x=0$ нет разрыва.

Шаг № 2: продолжение с периодом $2 l$

Условие $f(l)=0$ дает, что в точках $x=\ln$ нет разрывов.

Второй спосо6 доказательства

В теории интегральных уравнений доказывалась теорема Стеклова, согласно которой система собственных функций задачи Штурма-Лиувилля полна.

Алгоритм решения задачи о возбуждении струны

Для того, чтобы по заданному начальному профилю струны и начальному распределению ее скоростей

$$
\left.u\right|_{t=0}=\varphi(x),\left.\quad u_{t}\right|_{t=0}=\psi(x)
$$

найти мгновенный профиль струны $y=u(x, t)$ при всех $t>0$, следует вычислить коэффициенты Фурье функций для φ и ψ по формулам

$$
\varphi_{n}=\frac{2}{l} \int_{0}^{l} \varphi(x) \sin \frac{\pi n x}{l} d x, \quad \psi_{n}=\frac{2}{l} \int_{0}^{l} \psi(x) \sin \frac{\pi n x}{l} d x
$$

и затем записать ответ в виде ряда по нормальным модам

$$
\begin{equation*}
u=\sum_{n=1}^{\infty}\left[\frac{\psi_{n}}{\omega_{n}} \sin \omega_{n} t+\varphi_{n} \cos \omega_{n} t\right] \sin \frac{\pi n x}{l} \tag{2}
\end{equation*}
$$

Методы математической физики
Возбуждение колебаний
Пример № 1
Пример № 1

Удар молоточком

Удар молоточком

При игре на ударных музыкальных инструментах (напр., рояле) по струне ударяют молоточком, то есть сообщают небольшому куску струны в начальный момент времени некоторую начальную скорость. Простейший способ описать эту ситуацию, принять

$$
\left.u\right|_{t=0}=0,\left.\quad u_{t}\right|_{t=0}= \begin{cases}v, & |x-c|<\delta \\ 0, & |x-c|>\delta\end{cases}
$$

Система компютерной алгебры

Giac/Xcas - свободная система компьютерной алгебры (CAS) для Windows, Mac OS X и Linux/Unix, созданная Бернаром Парисом из Института Фурье (лицензия GPL3). Синтакис весьма схож с Maple.
http://www-fourier.ujf-grenoble.fr/~parisse/giac.html

Решение и создание анимации в Giac/Xcas

Файл Task-1.xws - Запустить

1	restart;
2	$\mathrm{l}:=1 ; \mathrm{a}:=1 ; \mathrm{c}:=1 / 10$; delta:=0.1; v:=1;
3	psi:=piecewise($\mathrm{x}<\mathrm{c}-$ delta, $0, \mathrm{x}<\mathrm{c}+$ delta, $\mathrm{v}, 0$) ;
4	assume(n,integer) ; psin:=simplify (2/l*int (psi*sin(Pi*n*x/l), $\mathrm{x}=0 . .1$) ;
5	$\mathrm{u}:=\operatorname{sum}(\mathrm{psin} * \sin (\mathrm{Pi} * \mathrm{n} * \mathrm{x} / \mathrm{l}) * \sin (\mathrm{Pi} * \mathrm{n} * \mathrm{a} * \mathrm{t} / \mathrm{l}) *(\mathrm{Pi} * \mathrm{n} * \mathrm{a} / \mathrm{l}) \wedge(-1), \mathrm{n}=1 . .50)$;
6	animate ($u, \mathrm{x}=0 . .1, \mathrm{t}=0 . .2 * \mathrm{l} / \mathrm{a}$, frames=20) ;

Описание решения

При малых t в месте удара быстро возникает горб, который движется через центр струны к противоположному ее концу со скоростью a, от него отражается, опрокидывается, возвращается назад и снова опрокидывается.

Возникновение горба

На рис. построены мгновенные профили струны длины при ударе молоточком толщины в $2 \delta=0.2 l$ в точку $c=l / 10$ при малых $t: t=0.01 l / a$ (красный),$t=0.05 l / a$ (синий), $0.1 l / a$ (зеленый) и $t=0.2 l / a($ черный $)$.

Движение горба

На рис. приведены мгновенные профили струны при ударе молоточком толщины в $2 \delta=0.2 l$ в точку $c=l / 10$ за первую четверть периода ее колебаний: $t=0.2 l / a$
(красный), $t=0.3 l / a$
(синий), $0.4 l / a$ (зеленый) и
$t=0.5 l / a$ (черный).

Явление Ги6бса

Возле точек разрыва
частичные суммы
осциллируют с амплитудами, которые не стремятся к нулю с ростом числа членов частичных сумм.

Неклассичность решения

Коэффициенты Фурье профиля начальных скоростей

$$
\psi_{n}=\frac{2}{l} \int_{c=\delta}^{c+\delta} v \sin \frac{\pi n x}{l} d x=\frac{4 v}{\pi} \frac{1}{n} \sin \frac{\pi n c}{l} \sin \frac{\pi n \delta}{l},
$$

убывают всего лишь как n^{-1}. Поэтому ряд

$$
u=\sum_{n=1}^{\infty} \frac{\psi_{n}}{\omega_{n}} \sin \omega_{n} t \sin \frac{\pi n x}{l}, \quad\left(\omega_{n} \sim n\right)
$$

равномерно по x и t сходится к непрерывной функции, но производная этой функции может иметь скачки (горб имеет форму треугольника).

Методы математической физики
Возбуждение колебаний
Пример № 2
Пример № 2

山ипок

Щипок

При игре на щипковых музыкальных инструментах (напр., apфе или гитаре) струны отклоняют в начальный момент в некотором месте струны $x=c$, а затем отпускают. Простейший способ представить себе эту ситуацию, допустить что в начальный момент времени профиль струны имел вид треугольника с вершиной (c, h), то есть

$$
\varphi= \begin{cases}\frac{h}{c} x, & 0<x<c \tag{3}\\ \frac{h(l-x)}{l-c}, & c<x<l\end{cases}
$$

а начальные скорости были равны нулю.

Решение и создание анимации в Giac/Xcas

Файл Task-2.xws - Запустить

1	restart;
2	$1:=1 ; \mathrm{a}:=1 ; \mathrm{c}:=1 / 3 ; \mathrm{h}:=1$; phi:=piecewise (x<c, $\mathrm{x} * \mathrm{~h} / \mathrm{c},(\mathrm{h} /(1-\mathrm{c})$) * (1-x)) ;
3	assume (n,integer) ; phin:=simplify (2/l*int (phi*sin(Pi*n*x/l), x=0..l)) ;
4	$\mathrm{u}:=\operatorname{sum}(\mathrm{phin} * \sin (\mathrm{Pi} * \mathrm{n} * \mathrm{x} / \mathrm{l}) * \cos (\mathrm{Pi} * \mathrm{n} * \mathrm{a} * \mathrm{t} / \mathrm{l}), \mathrm{n}=1 . .50)$;
5	

Мгновенные профили при различных t

Мгновенные профили струны при возбуждении щипком (метод Фурье, $c=l / 3$) за половину периода колебаний $T: t=0$ (красный), $t=0.2 T$ (синий), $0.4 T$ (зеленый), $t=0.6 T$ (черный), $0.8 T$ (циан) и $t=T$ (желтый).

Описание решения

Максимум мгновенного профиля перемещается из точки (c, h) в симметричную относительно центра струны точку ($l-c,-h$) и обратно.
«Гибкая нить» совершенно не сопротивляется изгибам, фактически все время представляя собой ломаную из трех звеньев, что мало похоже на поведение реальной струны.

Неклассичность решения

Функция φ непрерывна, но ее график имеет излом в точке $x=c$, поэтому ее коэффициенты Фурье

$$
\varphi_{n}=\frac{2 h l^{2}}{\pi^{2} n^{2} c(l-c)} \sin \frac{\pi n c}{l}
$$

убывают всего лишь как n^{-2}, а значит ряд для решения

$$
u=\frac{2 h l^{2}}{\pi^{2} c(l-c)} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \frac{\pi n c}{l} \cos \omega_{n} t \sin \frac{\pi n}{l} x
$$

дифференцировать по x или t нельзя.

Домашняя работа

Выполненную домашнюю работу следует собрать в один pdf-файл и послать по адресу mmph@narod.ru, указав в теме письма номер группы. В ответ придут замечания и комментарии. После одной такой итерации работа будет опубликована на сайте http://mmph.narod.ru.
Любители MSOffice 2007 могут выполнить все домашнее задание в нем, установив надстройки «Microsoft Mathematics для Word и OneNote» и «Сохранение в формате PDF».

Домашняя задача № 1

Решите задачу о возбуждении ударом, использовав в начальных условий более разумную гладкую функцию:

$$
\left.u\right|_{t=0}=0,\left.\quad u_{t}\right|_{t=0}= \begin{cases}v \cos \frac{x-c}{\delta} \frac{\pi}{2}, & |x-c|<\delta \\ 0, & |x-c|>\delta\end{cases}
$$

Нарисуйте мгновенные профили струны при различных t и опишите ход решение и укажите принципиальные отличия решения в этом случае, от разобранного выше. Для справок: [6], прил. 1.

Домашняя задача № 2

Какие изменения следует внести в предложенное выше изложение метод Фурье с тем, чтобы решить начально-краевую задачу

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<\pi, t>0) \\
\left.u\right|_{t=0}=\varphi(x),\left.\quad u_{t}\right|_{t=0}=\psi(x), \\
\left.u_{x}\right|_{x=0}=\left.u_{x}\right|_{x=\pi}=0
\end{array} ?\right.
$$

Для справок: [5], стр. 283, № 1.

Ссылки

Пмвлих. О Пифагоровой жизни. Пер. с древнегреч. И.Ю. Мельниковой. М.: Алетейа, 2002. Гл. XXVI.
Е. Хвольсон О.Д. Курс физики. Т. 2. СПб., 1898 .

Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления.

В Свешников А.Г., Боголюбов А.Н., Кравцов В.В. Лекции по математической физики. Подойдет любое издание, напр., М.: «Наука», 2004 г.

Еоголюбов А.Н., Кравцов В.В. Задачи по математической физики. Изд-во МГУ, 1994.

Тихонов А.Н., Самарский А.А. Уравнения математической физики. Подойдет любое издание, напр., 6-е изд. М., Изд-во МГУ, 1999.

Конец

(c) 2012 г., Михаил Дмитриевич Малых. Текст доступен на условиях лицензии Creative Commons Attribution-Share Alike 3.0 Unported.
Илл. на стр. 5 взята из миланского издания 1492 года «Theorica musicae» Гафурия.
Илл. на стр. 7 взята из кн. Bibliothek allgemeinen und praktischen Wissens für Militäranwärter. Band III. Deutsches Verlaghaus Bong \& Co.:
Berlin-Leipzig-Wien-Stuttgart, 1905.

[^0]: ${ }^{1}$ Adobe Reader: View -> Navigation Panels -> Attachments

